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Abstract 20 

 21 

Using internally-consistent albedo, aerosol, cloud and surface data from the Multi-angle Imaging 22 

SpectroRadiometer (MISR) instrument onboard the Terra satellite, top-of-atmosphere (TOA) 23 

spectral albedo change ( d ) in the presence of aerosols over land is estimated and its 24 

dependence on aerosol and surface properties is analyzed. Linear regressions between spectral 25 

TOA albedo and aerosol optical depth (AOD) for different surface types are examined to derive 26 

the aerosol-free TOA albedo. MISR surface BiHemispherical Reflectance (BHR) values are used 27 

to differentiate surface types. We find relatively high correlations between spectral TOA albedo 28 

and AOD for BHR-stratified data in 2°×2° grid cells. The global mean values of cloud-free d  29 

over land for June-September 2007 are estimated to be 0.018±0.003 (blue), 0.010±0.003 (green), 30 

0.007±0.003 (red), and 0.008±0.006 (NIR). Individual regions show large variations from these 31 

values. Global patterns of d  are determined mainly by AOD and aerosol radiative efficiency. 32 

Large positive values of d  are observed over regions with high aerosol loading and large 33 

single-scattering albedo (SSA), where the aerosol scattering effect is dominant. The presence of 34 

light absorbing aerosols reduces aerosol radiative efficiency and d . Surface reflectance 35 

influences both aerosol scattering and absorbing effects. Generally, the aerosol radiative 36 

efficiency decreases with increasing BHR. We also examined d – AOD correlations over 37 

different vegetation types. We find the smallest d  values are over needleleaf forests and 38 

shrublands, whereas the largest values are over cropland and barren regions. The aerosol 39 

radiative efficiencies are lowest over needleleaf forests and barren regions, and highest over 40 

grasslands and croplands.  41 

42 
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 43 

1. Introduction 44 

Aerosols, both natural and anthropogenic, perturb the radiative balance of Earth‟s atmosphere 45 

directly by scattering and absorbing the solar irradiance [Chylek and Coakley, 1974; Coakley et 46 

al., 1983; Charlson et al., 1990]. On a global average, anthropogenic aerosols exert a negative 47 

radiative forcing, including a total aerosol direct radiative forcing of -0.5±0.4 Wm
-2

 [IPCC, 48 

2007]. It partly offsets the positive radiative forcing caused by the post-industrial rise of carbon 49 

dioxide (1.66±0.17 Wm
-2

, IPCC [2007]), though the spatial distributions of aerosol forcing is 50 

very different. An accurate quantification of the aerosol direct radiative forcing is critical for the 51 

interpretation of previous climate records and the projection of future climate change 52 

[Mishchenko et al., 2007; Chylek et al., 2007].  53 

Current estimates of the aerosol direct radiative forcing have large uncertainties [IPCC, 2007]. 54 

Aerosol particles have a variety of shapes, sizes, and chemical compositions, that directly affect 55 

the aerosol optical properties and the ability of aerosols to change the climate [Kaufman et al., 56 

2002a]. Spatial and temporal distributions of aerosols are highly variable due to their diverse 57 

sources and short lifetimes [Quinn et al., 2000; Quinn and Bates, 2005]. Additionally, the land 58 

surface is highly heterogeneous in reflecting and absorbing solar radiation at different 59 

wavelengths [Betts et al., 1996], which also impacts the aerosol effect on Earth‟s radiative 60 

balance. Thus, estimating aerosol radiative forcing is more challenging than estimating the 61 

radiative forcing due to well-mixed greenhouse gases.  62 

A large portion of the uncertainty in quantifying aerosol direct radiative forcing results from poor 63 

constraints on the aerosol shortwave direct radiative effect (SWDRE). In this paper, we use the 64 

term aerosol radiative effect to represent the change in top-of-atmosphere (TOA) radiative fluxes 65 
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due to the presence of all aerosols (natural and anthropogenic), and distinguish this from aerosol 66 

radiative forcing (the radiative effect of anthropogenic aerosols alone). The estimation of 67 

SWDRE by all aerosol species is the basis for quantifying the direct radiative forcing by 68 

anthropogenic aerosols. Therefore, a first step toward reducing the uncertainty range of aerosol 69 

forcing is to improve the estimate of aerosol SWDRE. 70 

Previously, a widely used approach for estimating the aerosol SWDRE is through chemical 71 

transport and general circulation model simulations [e.g., Hansen et al., 1998]. There are large 72 

uncertainties in these model-based estimates as well as discrepancies among them, due to 73 

incomplete knowledge of aerosol processes and assumptions made in the aerosol simulations [Yu 74 

et al., 2006; Kinne et al., 2006]. Recently, much effort has also been made to assess the aerosol 75 

radiative effect using measurements from ground based networks, satellite sensors, and intensive 76 

aircraft field experiments [Yu et al., 2006]. In particular, satellite remote sensing provides 77 

frequent, global coverage of aerosol amount and type, as well as the TOA radiance distribution. 78 

It thus offers a unique opportunity to constrain aerosol SWDRE [Kaufman et al., 2002a; 79 

Anderson et al., 2005; Diner et al., 2005].  80 

Two approaches have been used to exploit satellite data in the calculation of aerosol SWDRE. In 81 

the first approach, satellite aerosol observations are used to feed a radiative transfer model to 82 

derive the aerosol radiative effect [e.g., Yu et al., 2004; Remer and Kaufman, 2006]. The second 83 

approach uses satellite observations directly without resorting to radiative transfer calculations. 84 

In this case, the aerosol direct radiative effect is derived from satellite-observed changes in 85 

broadband radiative flux due to the presence of aerosols in the atmosphere [Christopher et al., 86 

2000; Loeb and Kato, 2002; Christopher and Zhang, 2002; Loeb and Manalo-Smith, 2005]. 87 

However, the satellite-only approach has so far been limited primarily to over the oceans. 88 
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Application of this approach over land remains challenging mainly because of the large 89 

uncertainty in aerosol retrievals over bright land surfaces, the large heterogeneity in land surface 90 

reflectivity, and the difficulty to estimate the TOA radiative flux for aerosol-free scenes [Loeb 91 

and Kato, 2002]. The Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA‟s Terra 92 

satellite provides more accurate aerosol optical depth (AOD) retrievals over land [Abdou et al., 93 

2005], as well as more information about aerosol properties [Kahn et al., 2001], than are 94 

obtained from single-angle, multi-spectral techniques. It thus has the potential to reduce aerosol 95 

SWDRE uncertainties over land. Recently, Patadia et al. [2008] estimated aerosol SWDRE over 96 

global land using merged Clouds and Earth‟s Radiant Energy System (CERES), Moderate 97 

Resolution Imaging Spectroradiometer (MODIS), and MISR data. They obtained aerosol-free 98 

TOA broadband flux through the regression between MISR single-band AOD and CERES 99 

broadband flux for 0.5°×0.5° cloud-free regions. 100 

In this study, we estimate the aerosol SWDRE on a global scale. Our approach is similar but 101 

different in several important ways from that of Patadia et al. [2008]. First, we use MISR data 102 

for aerosol properties, TOA albedo, surface optical properties, and cloud properties. The use of 103 

internally consistent data should reduce systematic sampling biases that can occur when data 104 

from different instruments are used. Second, we estimate the aerosol-free TOA albedo separately 105 

for different land cover types within a region, thereby taking into account land surface 106 

heterogeneity. Finally, we examine the relationship between the spectral TOA albedo and 107 

spectral AOD, which may better represent non-linear wavelength dependent effects.   108 

This paper is the first in a two-part series. In Part I, we examine the TOA albedo change due to 109 

the presence of aerosols over land by analyzing four months of MISR data for June-September 110 

2007. During this period, intense wildfires were observed in Central Africa, North America, 111 



 

6 

South America, and Siberia [NASA/University of Maryland, 2002]. Large amounts of light 112 

absorbing aerosols, including black carbon, were emitted from the wildfires. We focus on 113 

investigating how the aerosol amount, aerosol optical properties and land surface type affect the 114 

spectral aerosol radiative effect. In Part II we will present a method for estimating aerosol 115 

broadband SWDRE over the globe. Multiple-year MISR data will be explored and seasonal and 116 

inter-annual variability of aerosol SWDRE will be examined.  117 

Detailed descriptions of MISR data and the methodology used are presented in section 2. The 118 

global distribution of TOA albedo change due to aerosols, as well as its dependence on aerosol 119 

properties and surface type, are shown in section 3. We present an uncertainty analysis for these 120 

calculations in section 4. Summary and conclusions are given in section 5.  121 

 122 

2. Data and Methodology 123 

2.1 MISR data  124 

The MISR sensor uses nine cameras pointed at fixed viewing angles (0º, ±26.1º, ±45.6º, ±60.0º, 125 

±70.5º) to observe reflected and scattered sunlight in four spectral bands: 446 (blue), 558 (green), 126 

672 (red), and 866 nm (near infrared, NIR) [Diner et al., 1998]. The swath width is ~400 km, 127 

which provides global coverage in about nine days at the equator and two days near the poles.  128 

MISR global retrievals of aerosols, TOA albedo, surface properties and cloud information are 129 

available since late February 2000. For the purpose of quantifying TOA albedo change by 130 

aerosols, four MISR level 2 products are used in this study (Table 1): the aerosol product 131 

(AS_Aerosol), the albedo product (TC_Albedo), the land surface product (AS_Land), and the 132 

classifier product (TC_Classifier). 133 
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We use the „best estimate optical depth‟ from the MISR Level 2 Aerosol Product (Version 20), 134 

which has a spatial resolution of 17.6 × 17.6 km
2
 [Diner et al., 2001] and is reported at four 135 

spectral bands as mentioned above. The uncertainties of MISR AOD have been assessed with 136 

independent measurements. For example, Liu et al. [2004] estimated that the MISR AOD 137 

retrieval error over land is approximately 0.04 + 0.18 AOD. Thus, for AOD values between 0.1 138 

and 0.5 over land, the expected error in MISR AOD should be within 0.06-0.13. In comparison, 139 

the error in the MODIS AOD retrieval over land had been estimated to be 0.05 + 0.2 AOD [Chu 140 

et al., 2002]. Kahn et al. [2005] showed that about 2/3 of the MISR-retrieved AOD values fall 141 

within ±20% of concurrent AERONET values. In particular, the MISR retrievals over desert and 142 

coastal regions, where surface brightness and subpixel water contamination makes accurate 143 

retrievals challenging, are in good agreement with AERONET [Abdou et al., 2005; Martonchik 144 

et al., 2004]. Recently, Liu and Mishchenko [2008] compared coincident AOD measurements 145 

from MISR and MODIS. They showed the agreement over the land is often poor and even 146 

unacceptable. However, they acknowledged that their analysis cannot be used to determine 147 

which retrieval is more accurate. 148 

MISR also constrains aerosol Single Scattering Albedo (SSA) and Angstrom Exponent (AE). 149 

SSA represents the relative importance of aerosol scattering and absorption, and AE contains 150 

information about aerosol size. MISR aerosol retrieval method and its sensitivity to SSA have 151 

been previously reported [Chen et al., 2008; and references therein]. Uncertainties for AE and 152 

SSA are difficult to estimate due to the lack of validation data. We are currently evaluating these 153 

quantities by comparison to AERONET values. The challenge is that there are far fewer 154 

AERONET particle property retrievals than AOD retrievals. Additionally, AERONET-derived 155 

SSA is not a direct measurement and is subjected to many of the same uncertainties as the 156 
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satellite retrievals. In this study, we use MISR-derived SSA and AE to study how these aerosol 157 

optical properties influence the aerosol ability to modify TOA albedo. 158 

Based on observed radiances, MISR generates several TOA albedo products [Diner et al., 1999]. 159 

For the present study, we use the TOA local albedo, because it has the highest spatial resolution 160 

(2.2 × 2.2 km
2
) among all albedo products. MISR assigns recorded upward radiances to the tops 161 

and sides of vertical columns, 2.2 x 2.2 km
2
 in horizontal extent, at a height given by the 162 

Reflecting Level Reference Altitude (RLRA) obtained from stereo-derived cloud top heights. 163 

The spectral TOA local albedos from the MISR Level 2 standard product are determined only 164 

from the top-leaving radiances. Because the side-leaving, upward radiances are not included, 165 

using these albedos would probably cause an underestimation of the aerosol radiative effect. In 166 

this study, we include the side contribution by adding back the un-obscured side-leaving, upward 167 

radiances stored in the MISR TOA Albedo product. The radiances from different cameras are 168 

weighted using pre-established solid angle weighting factors [Diner et al., 1999]. To be 169 

compatible with the AOD product, we re-sampled the TOA local albedo (with side contribution 170 

included) to the 17.6 × 17.6 km
2
 resolution AOD grid. This method is similar to the standard 171 

process of deriving MISR restrictive albedo [Diner et al., 1999]. The only difference is that we 172 

calculate the albedo for 17.6 × 17.6 km
2
 domains, whereas the MISR restrictive albedo was 173 

derived on 35.2 × 35.2 km
2
 domains. The TOA albedo and AOD for each cloud-free 17.6 × 17.6 174 

km
2
 grid box are defined as a „data pair‟, which will be subject to linear regression analysis as 175 

discussed in section 2.2. 176 

In this study we use two different MISR products for cloud screening. In the base case 177 

calculation, we use the „SVM Cloud Confidence Level (CCL)‟, which was derived using Support 178 

Vector Machine (SVM), a machine learning technique [Mazzoni et al., 2007]. The MISR SVM 179 
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CCL product has a spatial resolution of 1.1× 1.1 km
2
. The 17.6 × 17.6 km

2
 grid box is set to 180 

„cloudy‟ if a single value of SVM CCL within the grid box is „highly likely‟ or „likely‟. This 181 

aggregation of confidence levels is conservative, to minimize the cloud contamination. All plots 182 

and tables shown in this paper are derived using SVM CCL cloud masks. As a sensitivity test, 183 

we also use the „Cloudy Clear Designation (CCD)‟, which was used for determining the 184 

azimuthal model in the MISR TOA local albedo standard retrieval. Similarly, we assume a 17.6 185 

× 17.6 km
2
 grid box to be cloudy if a single pixel within it is marked with a „cloudy‟ CCD. The 186 

cloudy grid boxes are excluded from further calculations. 187 

The MISR Surface product provides a number of parameters related to land surface properties, 188 

which can be used for stratifying by surface type. We use in this study the BiHemispherical 189 

Reflectance (BHR), defined as the radiant exitance divided by irradiance („albedo‟) under 190 

ambient illumination conditions (including both direct and diffuse illumination). This parameter 191 

is available in MISR‟s four spectral bands. Since MISR retrieval is able to separate the surface 192 

from the atmospheric signals, the retrieved BHR will reflect the change in surface optical 193 

properties, independent of the aerosols in the atmosphere above. The performance of MISR land 194 

surface parameters in classifying vegetation and other surface types has been widely evaluated 195 

[e.g., Hu et al., 2007; Armston et al., 2007]. The MISR BHR data has a spatial resolution of 1.1 196 

× 1.1 km
2
, and was also re-sampled to the 17.6 × 17.6 km

2
 grid for analysis. 197 

2.2 Method 198 

Aerosol effect on the TOA albedo ( d ) in each 2°×2° latitude-longitude region is defined as the 199 

difference between the mean MISR TOA albedo ( ) within the region over the time interval of 200 

interest (1 month) and the TOA albedo without the presence of aerosols ( 0 ). Within each 2°×2° 201 

region, there is little variation in the downward solar flux. Thus we simply estimated   from the 202 
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arithmetic mean TOA albedo for all data pairs within each 2°×2° domain. Satellite instruments 203 

(including MISR) are not able to observe the aerosol-free TOA albedo directly, since aerosol 204 

particles are always present in the atmosphere. To estimate 0 , we perform linear regressions 205 

between the spectral TOA albedo and spectral AOD for all the data pairs that have similar 206 

aerosol and surface properties. The y-intercept of each regression line represents the estimated 207 

aerosol-free TOA albedo for that region. We also assess the confidence with which this 208 

extrapolation can be performed. 209 

In this study, the regression is performed for data pairs in each 2°×2° region for each month. This 210 

selection of spatial and temporal scales preserves enough data samples and AOD dynamic range 211 

for the correlation analysis, and simultaneously limits the large variability in aerosol and surface 212 

properties, thus maintaining the quality of the linear regressions for most regions. In addition, 213 

considering the large variability of surface reflectance over land, we further divide the data pairs 214 

in each 2°×2° region into different sets according to their BHR values. Based on the probability 215 

density function of BHR globally (discussed with Figure 3C below), we divide the observed 216 

range into 10 evenly distributed sets between 0 and 0.1, and 35 sets between 0.1 and 0.8. We 217 

then examine the TOA albedo ~ AOD regression for data sets stratified by BHR within each 218 

region. Since the probability distributions of AOD and BHR are spectrally dependent (see Figure 219 

3B and 3C), the linear regression analyses are performed for each spectral band individually.  220 

Figure 1 shows an example of a successful linear regression. The grey points represent all cloud-221 

filtered data pairs associated with AOD and TOA albedo. Since no side contribution is included 222 

in the plotted TOA albedo, the correlation is noisy. The inclusion of both the top and side 223 

radiance contributions (black points in Figure 1) significantly improves the correlation and 224 

reduces the uncertainty in estimating the aerosol-free TOA albedo. The side contribution is 225 
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particularly important when a thick aerosol layer (e.g., a smoke or dust plume) is clearly present. 226 

The regression line in Figure 1 demonstrates that in the blue band, the presence of these aerosols 227 

raises the TOA albedo in this region (for a certain BHR stratum) at a rate of 0.074 per unit of 228 

AOD, and the derived aerosol-free TOA albedo is 0.161. 229 

We consider a linear regression successful if the Root Mean Square (RMS) error of the 230 

regression is smaller than 0.025, or if the correlation coefficient is larger than 0.5. We also 231 

require the number of data pairs in each set be greater than 10, and the AOD dynamic range to be 232 

over 0.15. Overall, about 70% of the data pairs in the visible bands produce successful 233 

regressions. Several reasons can cause a failure in linear regression. Data points may be too few 234 

due to extensive cloud cover or unsuccessful retrievals. Data points may have similar AOD 235 

values so that the AOD dynamic range is too small to do the regression. When surface or aerosol 236 

properties have large variabilities within a region during a month, a good linear regression 237 

between   and AOD is also difficult. The success ratio drops to about 30% for the MISR NIR 238 

band. This is likely due to two factors. AODs are typically lower in the NIR than in the visible 239 

bands (Ricchiazzi et al., 2006) as a result of smaller aerosol scattering in the former. Additionally, 240 

surface reflectivity is higher over some surfaces in the NIR than in the visible bands (Miura et al., 241 

2008).  242 

If the linear regression fails, d can not be estimated from the difference between   and 0 , 243 

because there is no successful estimate of 0  for that BHR set within that 2°×2° region. In such 244 

cases, d  is obtained by multiplying the mean AOD for that data set by a scaling factor. The 245 

scaling factors were pre-determined from all the available successful regressions globally. For 246 

each successful regression, we saved the slope of the AOD-  regression and the mean surface 247 

BHR and aerosol SSA of the data used for regression. The regressions were classified into 248 
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different groups based on the mean BHR and SSA values, and the mean value of regression 249 

slopes for each group was calculated. We fit an empirical expression for the slope (the scaling 250 

factor) in terms of BHR and SSA. This empirical scaling factor, which represents the mean 251 

ability of aerosols to affect the TOA albedo, was used for estimating d  when local linear 252 

regression failed. We prefer this method to simply putting missing data where linear regression 253 

fails based on the following considerations. First, we attempted to provide a global average value 254 

of d . Since the probability of failure is usually larger over regions with small AODs, the 255 

simple average over successful regressions may result in a positively-biased global mean value. 256 

Secondly, although the linear regression fails, the information on aerosol and surface properties 257 

may still be valid. We tried to utilize this information instead of discarding it. 258 

 259 

3. Results 260 

3.1 Global distributions of aerosol and surface properties over land 261 

The TOA albedo change due to the presence of aerosols in cloud-free regions is mainly 262 

determined by aerosol loading, aerosol optical properties, and surface reflectance. Figure 2 gives 263 

a global view of the four-month (June-September 2007) mean MISR-retrieved AOD, SSA, AE, 264 

and surface BHR over land. The AOD, SSA, BHR values are for 0.56 m (MISR green band). 265 

These values are averages for clear-sky only. MISR-retrieved global mean values of AOD, SSA, 266 

BHR and AE over land are summarized in Table 2. 267 

High AOD values are seen in desert regions such as the Sahara and the Arabian Peninsula, in 268 

polluted regions including South and East Asia, Eastern Europe, Southeast U.S., and in biomass 269 

burning regions such as Central Africa and the Amazon (Figure 2a). 270 
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Aerosol SSA, the ratio of scattering to total light extinction, indicates the relative importance of 271 

aerosol scattering versus absorption [Bergstrom et al., 2003]. Figure 2b shows high SSA values 272 

(close to unity) in most industrialized and desert regions, where aerosol scattering dominates. 273 

Aerosols in biomass burning regions are more absorbing with smaller SSA values. In Central 274 

Africa and South America, for example, averaged SSA values are as low as ~0.9, indicating 275 

relatively high aerosol absorption. This is also evident in Alaska, Northern Canada and Siberia, 276 

where high AODs are correlated with low SSAs (see Figure 2a and 2b).  277 

The AE is inversely correlated with the average size of aerosol particles: the smaller the particles, 278 

the larger the exponent [Angstrom, 1929; Schuster et al., 2006]. Small AE values in desert 279 

regions (Figure 2c) are consistent with the presence of large dust particles. Large values of AE 280 

are observed over biomass burning and industrial regions where fine-mode aerosols dominate.  281 

Previous studies have shown that the fraction of energy reflected at a particular wavelength 282 

varies with surface type [e.g., Kaufman et al., 2002b]. The MISR-derived BHR data shown in 283 

Figure 2d illustrates that global land surface is very heterogeneous in reflecting solar radiation. 284 

The less the vegetation cover, the larger the BHR values usually are in areas with high soil 285 

albedo. The largest BHR values are in desert and barren regions. The spectral signatures over 286 

different surface types have been observed to be very different [e.g., Tucker and Sellers, 1986]. 287 

For example, the reflectance over sand and soil increases with wavelength in the visible-NIR 288 

range, and the rate of increase diminishes at longer wavelengths. Over dense vegetation, the 289 

reflectance in the visible region is relatively uniform over the spectrum, with slightly higher 290 

values in the green band. From visible bands to NIR, however, there is a large jump in surface 291 

reflectance, known as the red-far red edge. These spectral signatures of surface types are well 292 

captured by MISR observations (Table 2 and Figure 2d). In vegetated regions, much higher BHR 293 
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values are observed in the NIR band than visible bands, whereas in desert and barren areas, the 294 

BHR increases smoothly from the blue to the NIR band.  295 

The probability distributions of MISR AOD, SSA, BHR and AE over land are shown in the 296 

diagonal panels in Figure 3. Figure 3B shows that AOD has a narrower distribution at longer 297 

wavelengths. Most BHR values in visible bands are below 0.2, whereas in the NIR band, a peak 298 

near 0.3 is present (Figure 3C). Most SSA distributions are above 0.9, with more small values in 299 

blue and green bands (Figure 3D). AE values are mostly distributed between 0.5 and 2, with a 300 

broad peak at ~1.2 (Figure 3E). The other panels of Figure 3 will be analyzed further in section 301 

3.3.1. 302 

3.2 TOA albedo change by aerosols over land 303 

Based on linear regressions between the MISR TOA albedo and AOD, we estimate the aerosol 304 

effect on TOA albedo in the four MISR spectral bands. Figure 4 shows the 4-month (June-305 

September 2007) mean spatial distributions of TOA albedo change due to the presence of 306 

aerosols ( d ) over cloud-free land. Persistent cloud cover over the Amazon, Central Africa, 307 

Southeast Asia, and West Canada prevents MISR from observing enough cloud-free data to meet 308 

our criteria, so d  values over some portion of these regions are missing.  309 

The global means of d over cloud-free land are 0.018 (blue), 0.010 (green), 0.007 (red), and 310 

0.008 (NIR). We would expect d to be large where AOD is high, especially if the aerosols are 311 

bright (high SSA) and reside over dark surfaces. We examine first the relationship between d 312 

and AOD and then the relative contributions of surface and aerosol optical properties to d. 313 

The 



d patterns show some similarity with the AOD pattern (Figure 2a), i.e., high d  values 314 

are found in most high AOD regions, including East Asia, the Indian and Arabian Peninsulas, 315 
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Western Sahara, East Europe, and North America. However, high AOD is not always 316 

accompanied by high d . In some biomass burning regions with relatively small SSA (e.g., 317 

Central Africa, see Figure 2b), d  is small due to aerosol absorption. Small d  is also 318 

observed over bright surfaces, such as in northeastern Sahara, and in the desert regions of 319 

Australia and Southern Africa.  320 

Patadia et al. [2008] neglected a large area spanning Northern Africa to middle Asia in their 321 

calculation due to inconsistent AOD-flux relations over high reflectance surfaces. The use of 322 

internally consistent data sets and BHR stratification in our study produces relatively good 323 

correlations between AOD and TOA albedo for this area. The inclusion of these high-reflectance 324 

regions, which account for about 10% of Earth‟s landmass, is necessary to accurately estimate 325 

the global aerosol radiative effect. Large aerosol loading (Figure 2a) and intense solar radiation 326 

(due to high sun at low latitude and low subtropical cloud cover) have the potential to cause a 327 

large aerosol radiative effect in these regions (Figure 4). We estimate that neglecting of these 328 

regions would produce an underestimate of global mean d  over land by ~5% of its value.  329 

In Figure 4, the detailed patterns of TOA albedo change due to aerosols over the Saharan desert 330 

and Arabian Peninsula demonstrate the value of our approach over bright surfaces. The aerosol 331 

effect on TOA albedo differs between the western and eastern parts of the highly reflective 332 

Saharan desert. In the Western Sahara, aerosol loading is very high (mean AOD is greater than 333 

0.5 at 0.56m wavelength, see Figure 2a), and small AE values (Figure 2c) are consistent with 334 

the single dominant aerosol component being large dust particles. The d  value in this part is 335 

also high (>0.03 at 0.56m). In northeastern Sahara, aerosol loading is much smaller, and the 336 

surface reflectance is higher. Relatively higher AE values suggest smaller aerosol size 337 

distributions, which could be due to the change in size distribution during dust transport, or 338 
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different surface properties producing different mineral dust size distributions. Other sources of 339 

aerosols, such as pollution, may also contribute to the presence of small particles. The calculated 340 

d  in this region is clearly smaller than that in the western Sahara. Because the surface and dust 341 

particles have similar ability to reflect solar radiation, and also because the dust particles are 342 

weakly absorbing, negative values of d  (corresponding to a warming effect) are sometimes 343 

found in this region. For the southern rim of the Sahara, where a large dust burden occurs over a 344 

less reflective surface, d  is largest. There is a similar spatial distribution of d  in the Arabian 345 

Peninsula, with large values over darker surfaces in the western part near the Red Sea.  346 

3.3 Dependence of d  and aerosol radiative efficiency on surface reflectance and aerosol 347 

optical properties 348 

Latitudinal distributions of spectral d  and MISR AOD at 0.56m are shown in Figure 5a. d  349 

generally decreases from the blue band to red band. The decrease is partly due to the smaller 350 

aerosol scattering at longer wavelength, and partly due to increasing surface reflectance from 351 

blue to red for most surface types (Table 2), which reduces the contrast between aerosol and the 352 

surface. The d  patterns for red band and NIR are similar.  353 

As in Figure 4, the d  distribution generally follows the AOD distribution, with two peaks 354 

located in 10~30°N and 0~10°S (see also Figure 2a). However, there are some regions where the 355 

d  and AOD distributions do not match one another. For example, d  in the three visible 356 

bands decreases from 10°N to 20°N despite the increase in AOD. 357 

In order to interpret these results, we introduce the concept of aerosol radiative efficiency. The 358 

aerosol radiative efficiency is defined here as d  normalized with respect to MISR AOD at 0.56 359 

m. It represents the aerosol‟s ability to change the TOA albedo. The latitudinal distributions of 360 
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spectral aerosol radiative efficiencies, together with the MISR-retrieved surface and aerosol 361 

properties (BHR and SSA at 0.56 m, and AE), are shown in Figure 5b. The aerosol radiative 362 

efficiencies have very different latitudinal distributions from the d  distributions but are 363 

directly linked to the distributions of aerosol and surface properties. The two dips near 20°N and 364 

30°S are likely due to the large BHR in those regions (also shown in Figure 2d). From 10°N to 365 

20°N, the aerosol radiative efficiency decreases abruptly in the visible bands due to the increase 366 

of BHR, which explains why d  decreases despite the increase in AOD (Figure 5a). In other 367 

regions where surface reflectance is low, the aerosol radiative efficiency is positively correlated 368 

with SSA. From 30°S to 40 °S, both the increase of SSA and the decrease of BHR contribute to a 369 

significant rise in the aerosol radiative efficiency. The largest efficiency is in the mid-latitude 370 

Northern Hemisphere, where the vegetation cover is dense so the surface reflectance is small 371 

(see Figure 2d), and the aerosol particles are generally small (see Figures 2c and 5b) and highly 372 

scattering (see Figures 2b and 5b).  373 

The patterns shown in Figures 4 and 5 clearly indicate that the TOA albedo change by aerosols, 374 

d , is influenced not only by the aerosol radiative properties, but also by surface reflectance. 375 

We explore the dependence of d  and aerosol radiative efficiency on surface reflectance and 376 

aerosol optical properties in more detail, including AOD, SSA, and AE dependencies. 377 

3.3.1 d  378 

In addition to the probability distribution functions for each variable, discussed above, Figure 3 379 

gives the correlations between calculated d  and MISR AOD, BHR, SSA, and AE. Fitted lines 380 

for correlations between each pair of these variables are plotted in panels above the diagonal, 381 

based on statistics on all 2°×2° grid cells over land, for June-September 2007. 382 
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In general, d  increases, albeit nonlinearly, with increasing AOD (hence larger aerosol 383 

scattering) for all four spectral bands (Figure 3a). The slopes are largest in the blue band where 384 

the largest aerosol radiative efficiencies occur (see Figure 5b). The slopes tail off at larger AOD 385 

values (~0.2). This may be partly explained by aerosol multi-scattering at higher aerosol loading 386 

[Bissonnette, 1988]. Additionally, brighter surfaces with higher BHR values, where AOD values 387 

are typically large (Figure 3e), tend to decrease the aerosol radiative efficiency.  388 

The dependence of d  on surface reflectance is complex. Figure 3b shows that when BHR is 389 

small, the correlation between d  and BHR is weak. When BHR is higher, d  starts to 390 

increase with increasing BHR. This pattern can be attributed to the correlation between AOD and 391 

BHR (Figure 3e), which shows AOD increases with increasing BHR when BHR is large enough. 392 

In this regime, the increase in AOD apparently outweighs the decrease of aerosol radiative 393 

efficiency caused by increasing BHR (as shown in Figure 5b). When BHR is very large, as 394 

shown in Figure 3e, the correlation between AOD and BHR is weak again. In this regime, the 395 

increased BHR dominates, leading to decreased aerosol radiative efficiency and smaller slope of 396 

d  ~ BHR. 397 

Many studies emphasize the importance of SSA, which represents the relative contributions of 398 

aerosol scattering and absorption, in affecting the Earth-atmosphere radiation budget [e.g., 399 

Hansen et al., 1998]. Aerosols with large SSA scatter the incoming solar radiation, cooling the 400 

atmosphere and surface. For fixed AOD, the net effect of increasing aerosol absorption (lowering 401 

SSA) is to decrease TOA albedo, due to the absorption.  Figure 3c demonstrates this d  402 

decrease with decreasing SSA, an effect that is more obvious for blue and green bands. For the 403 

majority of the SSA range, the change in AOD and BHR with changing SSA is small (Figure 3f 404 

and 3h). Therefore, the positive correlation of d  and SSA is mainly caused by the change SSA 405 
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makes to the aerosol radiative efficiency. Figure 3c also shows that the spectral difference of d  406 

is largest at high SSA. The spectral difference becomes much smaller when aerosol absorption is 407 

important (i.e., SSA is low). This dependence pattern is also seen in Figure 4, which shows the 408 

largest d  change from the blue to NIR bands in industrial and desert regions, where SSA is 409 

high (Figure 2b). We also notice that when SSA is close to unity, positive correlations between 410 

AOD and SSA are present (Figure 3f), which additionally increases the slope of d  ~ SSA 411 

(Figure 3c). 412 

In general, AE is inversely related to the aerosol size. The relationship between d  and AE 413 

(Figure 3d) can be explained by the correlations between AE and other aerosol and surface 414 

properties (AOD, BHR, and SSA).  Over the majority of the AE range (0.5~2.0, as shown in 415 

Figure 3E), d  decreases with increasing AE, mainly because of the negative correlation 416 

between AOD and AE (Figure 3g). Because BHR also decreases with increasing AE (Figure 3i), 417 

the slopes of d  AE are smaller than those of AOD ~ AE. Figure 3j shows SSA is also 418 

inversely correlated to AE when aerosol size is in the moderate range. Strong light absorption 419 

(low SSA) is mainly associated with small particles (AE ~ 2 as shown in Figure 3E). However, 420 

small SSA values when AE ~ 0 indicate that very large particles may also absorb light in the blue 421 

and green bands. Figure 3j shows that typically, SSA decreases with wavelength for small 422 

particles (AE > ~1.5), but increases with wavelength for large particles. This is consistent with 423 

previous aircraft measurements [Bergstrom et al., 2002]. The different spectral dependence of 424 

SSA in the MISR products is a consequence of the particle models underlying the MISR aerosol 425 

retrievals and is based on a combination of satellite-measured radiances and prior knowledge 426 

from field observations [e.g., Kahn et al., 2001]. 427 
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Figure 6 demonstrates how the d  dependence on AOD is affected by BHR, SSA and AE (in 428 

the green band). The rate of increase of d  with AOD is smaller when BHR is larger. The 429 

decreased rate is significant only when AOD is larger than ~0.2. For higher AOD, this difference 430 

becomes larger. As might be expected, the d  AOD correlation slope is larger also for 431 

brighter (higher SSA) particles. However, the increase in slope is smaller for higher SSA, and is 432 

less dramatic than the AOD dependence. Probably due to weak inverse correlation between BHR 433 

and AE (Figure 3i), the d  AOD slope is higher when AE is larger. 434 

3.3.2 Aerosol radiative efficiency 435 

To further illustrate the dependence of d  on aerosol properties and surface reflectance, we plot 436 

the aerosol radiative efficiency as a function of BHR, SSA, and AE in Figure 7. Because there 437 

are not enough data points, lines in Figure 7a stop at certain BHR values. Figure 7a shows that 438 

aerosol radiative efficiencies do not change substantially with BHR when the surface is dark 439 

(low BHR). When the surface is brighter (i.e., BHR surpasses a critical value), the aerosol 440 

radiative efficiencies decrease as BHR increases. This relationship causes a strong correlation 441 

between aerosol radiative efficiency and BHR when BHR is large, as shown in Figure 5b. Figure 442 

6a also shows the critical BHR value increases with wavelength, and the slope becomes smaller 443 

for longer wavelength.  444 

The positive correlation between aerosol radiative efficiency and SSA (Figure 7b) is similar to 445 

that between d  and SSA (Figure 3c). For blue and green bands, the radiative efficiency 446 

increases with increasing SSA. This correlation contributes to the agreement between the aerosol 447 

radiative efficiency pattern and the SSA pattern (Figure 5b) outside the high BHR region. 448 
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The dependence of aerosol radiative efficiency on AE (Figure 7c) can be attributed to the 449 

combined effect of the BHR-AE correlation (Figure 3i) and the SSA-AE correlation (Figure 3j). 450 

For the blue band, BHR decreases and SSA increases with increasing AE. Both effects contribute 451 

to the increase of aerosol radiative efficiency. For the NIR band, the correlation between BHR 452 

and AE is weak. The negative correlation between aerosol radiative efficiency and AE is mainly 453 

determined by the SSA-AE relationship. For the green and red bands, the two effects nearly 454 

cancel out and the aerosol radiative efficiencies are not sensitive to AE.  455 

We should bear in mind that since BHR is predominantly a surface property, the above-456 

mentioned empirical correlation of BHR with aerosol properties may not represent a simple 457 

causal relationship.  However, some connections are likely, such as bright desert surfaces being 458 

the source for bright, and relatively high AOD, airborne mineral dust. 459 

3.3.3 Effect of surface reflectance on aerosol scattering and absorption 460 

As discussed above, the increasing of TOA albedo by aerosol scattering and the decreasing by 461 

aerosol absorption together determine the aerosol radiative efficiency. Figure 8 illustrates how 462 

the change of surface reflectance mediates the influence of aerosol scattering and absorption. The 463 

derived aerosol radiative efficiencies for all 2°×2° grid cells globally are stratified based on their 464 

BHR and SSA values, and the mean aerosol radiative efficiency is shown for each stratum.  465 

Figure 8 helps to additionally separate the contributions from BHR and SSA. When SSA is close 466 

to 1 (box 1 within each spectral panel in Figure 8), the dominant effect is aerosol scattering. 467 

When the surface is brighter, the net downwelling shortwave radiance passing through the 468 

atmosphere is smaller, because the surface reflects more radiance back to the space. In other 469 

words, the contrast between the reflectance from aerosols and surface is smaller. This effect 470 

decreases the magnitude of TOA albedo change by aerosols. As a consequence, as shown in box 471 
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1 of Figure 8, the aerosol radiative efficiencies decrease with increasing BHR for blue, green, 472 

and red bands. It is less obvious for for NIR.  473 

When SSA is small, the contribution from absorptive aerosols changes the aerosol radiative 474 

efficiency, as well as its dependence on surface reflectance. By using a radiative transfer model, 475 

Satheesh [2002] showed that for a given aerosol system, the effect of soot absorption is 476 

significantly larger over brighter surface (either land or clouds) because the radiation reflected 477 

from the surface below would interact with the aerosols again. Our results in Figure 8 (box 2) 478 

show such an enhancement as well. As BHR increases, the aerosol radiative efficiency (for 479 

constant SSA) decreases, and turns negative when BHR exceeds a certain threshold. The 480 

presence of cases with negative values indicates that aerosols may warm the atmosphere when 481 

the surface is highly reflective. The amplification effect is especially true for the green and red 482 

bands. 483 

3.4 d  patterns over different vegetation types 484 

Vegetation cover determines the ratio of reflection and absorption of solar radiation by the land 485 

surface. Knowing the TOA albedo change by aerosols over different vegetation types will help 486 

establish how land cover change, such as desertification and deforestation, will alter the aerosol 487 

radiative effect. Land cover change may be accompanied by the change of aerosol optical 488 

properties, due to the alteration of biogenic emissions, biomass burning, or industrial activities. 489 

But on short time scales, we can assume the aerosol optical properties remain unchanged after a 490 

change in vegetation type. MODIS provides a 1 km land cover product (MOD12Q1), which 491 

includes an IGBP (International Geosphere-Biosphere Programme) land cover classification map 492 

of the globe [Belward et al., 1999; Scepan et al., 1999]. We aggregated the MODIS land cover 493 

into seven land vegetation types, covering regions where enough land area and sample size are 494 
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available - needleleaf forest, broadleaf forest, shrubland, savanna, grassland, cropland, and 495 

barren areas. The dominant surface type in each 2°×2° grid cell was determined and is shown in 496 

Figure 9a.  497 

Correlations between blue band d  and AOD over different vegetation types are shown in 498 

Figure 9b. Compared to other surface types, barren regions have the lowest slope, indicating 499 

aerosols over these regions have the smallest radiative efficiency. Most barren regions are 500 

located at 15°~30°N (see Figure 9a), where high surface reflectance (Figure 2d and 5b) reduces 501 

the aerosol effect on TOA albedo. However, because the aerosol loading over these regions is 502 

generally high (Figure 2a and 5a), the mean d  is still large (See Table 2). Figure 9a shows the 503 

southern edge of the Sahara desert to be adjacent to grassland and savanna ecosystems, which 504 

have much smaller d  ~ AOD slope (Figure 9b). Due to this large contrast, the d  in this 505 

region has a large gradient (Figure 4b). 506 

Figure 9b also shows the largest dependence of d  on AOD is over croplands, which are mainly 507 

located near the industrial regions of the Northern Hemisphere, such as East and South Asia, 508 

Europe, and Eastern U.S. (Figure 9a). For a majority of these regions, the SSA value is large 509 

(Figure 2b) and BHR is small (Figure 2d), which both contribute to large aerosol radiative 510 

efficiency (30°~60°N in Figure 5b). In addition, these regions have moderate to large AOD 511 

(Figure 2a), likely due to anthropogenic emissions. All these factors make croplands the 512 

vegetation type with largest d (Table 2). 513 

Over most forests and grasslands, the correlations between d  and AOD are similar (Figure 9b), 514 

which means the aerosol radiative efficiency would be similar given similar AOD distributions. 515 

However, because aerosol loading over needleleaf and shrublands is small (Table 2), the aerosol 516 

radiative efficiency and d  in these regions are small.  517 
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The mean values of d  over different land vegetation types in all four MISR spectral bands are 518 

summarized in Table 2. A decrease of d  from short wavelength (blue band) to long 519 

wavelength (NIR) is seen for most vegetation types. Overall, the smallest d  values are over 520 

needleaf forests and shrublands, whereas the largest values are over cropland and barren regions. 521 

The aerosol radiative efficiencies are lowest over needleleaf forest and barren regions, and 522 

highest over grasslands and croplands. 523 

 524 

4. Uncertainty 525 

In this study, we use the MISR TOA albedo product and aerosol properties to derive the aerosol 526 

effect on TOA albedo. The availability of good quality AOD makes it possible to derive aerosol 527 

radiative effect over bright land surfaces. We also use MISR BHR to stratify the surface, which 528 

decouples the effects contributed by aerosols and surface. Despite these improvements, both 529 

unbiased and biased uncertainties still exist in the current estimation of TOA albedo change by 530 

aerosols. In this study, we consider three types of uncertainties: the uncertainty from the linear 531 

regressions, the uncertainty from the intrinsic scatter of MISR retrieved data, and the uncertainty 532 

due to cloud contamination. 533 

In the present study, the y-intercept of the TOA albedo ~ AOD linear regression is assumed to be 534 

the aerosol-free TOA albedo. Isobe et al. [1990, Equation 9] provide an approach for calculating 535 

the variance of the intercept from a linear regression. Based on this approach, we estimate the 536 

variance of d for each linear regression. When the regression is not successful, d is estimated 537 

from the mean AOD and a pre-determined scaling factor that depends on the mean SSA and 538 

BHR values for the region, as described in Section 2.2. Since the derivation of this scaling factor 539 

is based on the slopes (b) of all available successful regressions, we simply assume the variance 540 
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of the scaling factor is twice the mean variances of slopes. The variance of the slope (b) for each 541 

successful regression is also derived using the method of Isobe et al. [1990]. For each 2°×2° grid 542 

cell, the mean variance of d  is the sample-number-weighted mean variance of d  for every 543 

BHR set, including successful and unsuccessful regressions. By assuming the variance of d  is 544 

uncorrelated over different regions, we estimate the overall error due to the linear regression 545 

derived from this study is 0.0013 (blue), 0.0012 (green), 0.0015 (red), and 0.0019 (NIR). 546 

The uncertainty of d  also results from the intrinsic uncertainty of MISR retrieved AOD and 547 

TOA albedo. By comparing a 2-year measurement record of globally distributed AERONET Sun 548 

photometers, Kahn et al. [2005] showed that about 1 of the MISR-retrieved AOD values fall 549 

within ±0.05 (or 20%) of AERONET. Here we use 20% as the uncertainty range of global mean 550 

AOD in all four bands. By multiplying this uncertainty by the mean slope of the TOA albedo-551 

AOD relationship (~0.04 per unit of AOD), we obtain an additional uncertainty of 0.002 in the 552 

global mean d . The radiometric uncertainty of MISR radiances due the calibration is about 3-553 

4% [Bruegge et al., 2007]. In the MISR retrieval, top-leaving radiances were integrated either 554 

using an azimuthal model (AZM) or a Solid Angle Weighting method for cloud-free scenes. 555 

There are uncertainties in determining the integration coefficients for either method [Diner et al., 556 

1999]. The standard deviation of the albedo values with the AZM approach has been evaluated 557 

for different surface types in cloud-free scenes. Most albedo errors lie between 1% and 2% 558 

[Diner et al., 1999; Sun et al., 2006]. So we estimate the uncertainty of d  caused by the 559 

intrinsic uncertainty in MISR retrieved TOA albedo to be 4% d , where d  is the global 560 

mean of the TOA albedo change by aerosols. We estimate global mean of this uncertainty to be 561 

0.00072 (blue), 0.0004 (green), 0.00028 (red), 0.00032 (NIR). 562 
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Another source of uncertainty results from the use of a cloud mask to distinguish the cloudy from 563 

the cloud-free regions. Although we use stringent cloud screening in this study to minimize the 564 

cloud effect (see section 2.1), occasional misclassification of cloudy region as cloud-free region 565 

will systematically introduce a high bias. Additionally, the neglect of partly cloud-covered 566 

regions may bias the results toward situations dominated by large high-pressure systems [Remer 567 

and Kaufman, 2006]. However, this source of uncertainty is difficult to quantify, due to the 568 

scarcity of relevant studies. To estimate this uncertainty, we used two independent cloud mask 569 

products derived from MISR observations (SVM Cloud Confidence Level and the Cloudy Clear 570 

Designator). We also tried looser and more stringent ways of aggregating the cloud masks to 571 

17.6 × 17.6 km
2 

resolution. We find that the global mean d  varies by 0.0015 (blue), 0.0012 572 

(green), 0.0020 (red), 0.0051 (NIR) due to the use of different cloud masks.  573 

If we assume the uncertainties from different sources are uncorrelated, the total variance is the 574 

sum of variances from all the above-mentioned sources. Based on this calculation, the total 575 

uncertainty of global mean d  in this study is estimated to be 0.0029 (blue), 0.0027 (green), 576 

0.0032 (red), 0.0058 (NIR). By neglecting the diurnal and seasonal cycle, this corresponds to an 577 

uncertainty in clear-sky aerosol SWDRE of ~1.2 W/m
2
.  578 

However, regional uncertainties could be higher, and additional bias errors may exist. For 579 

example, in regions with large spatial variability of aerosol and surface properties, the 580 

correlations between TOA albedo and AOD are generally small and the d  uncertainty is high. 581 

Over desert regions where surface reflectance is high, the aerosol retrievals may contain some 582 

information from the surface, causing an overestimation of the aerosol radiative effect. The lack 583 

of small AOD values (particularly in the NIR band) may bring on additional uncertainty to the 584 

linear regression (small perturbation at high AOD may cause large variation in retrieved 585 
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intercept). The regressions could also deteriorate when persistent cloud cover is present so that 586 

the total number of data samples is small. It should also be noted that uncertainties contributed 587 

by the regional correlations are not included in the present analysis. 588 

 589 

5. Summary and Conclusions 590 

Despite recent major advances in atmospheric modeling and measurements, there is still large 591 

uncertainty in the estimation of the global aerosol radiative effect. Particularly, due to the 592 

difficulty of retrieving AOD over bright land surfaces, satellite based estimation of aerosol 593 

radiative effect over such surfaces is still missing [Yu et al., 2006]. Another major challenge is 594 

due to the highly heterogeneous nature of land surface types. The study presented in this paper 595 

demonstrates how internally consistent MISR aerosol, albedo, and surface observations can be 596 

used to assess the aerosol effect on TOA albedo over global land. More importantly, by using 597 

more reliable MISR AOD and aerosol properties over bright land surfaces, and BHR 598 

stratification to decouple aerosol and surface effects, this approach not only expands the spatial 599 

coverage, but also reduces the uncertainty in aerosol radiative effect estimates on global land.  600 

We have estimated the four-month (June-September 2007) mean value of clear-sky TOA albedo 601 

change due to the presence of aerosols ( d ) over global land to be 0.018±0.003 (blue), 602 

0.010±0.003 (green), 0.007±0.003 (red), and 0.008±0.006 (NIR). Major uncertainties originate 603 

from the linear regressions, the intrinsic scatter of MISR retrieved data, and cloud contamination. 604 

Individual regions show large spatial variability. Largest values of d  occur in the latitude 605 

bands 10°~30°N and 0°~10°S. The mean d  at 0.56m over bright Saharan Desert and Arabian 606 

Peninsula is 0.015. Neglecting these areas would cause an underestimation of the mean value 607 

over global land by ~5%.  608 
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The global patterns of d  are determined mainly by aerosol loading and surface reflectivity 609 

(BHR); aerosol radiative efficiency (defined as d  normalized by AOD at 0.56m) helps isolate 610 

the AOD contributions from other factors. In general, d  increases with increasing AOD, with 611 

increasing SSA, and with decreasing surface brightness, as expected. But the dependence of d 612 

on AOD decreases at high AOD, possibly due to a positive correlation between AOD and BHR. 613 

The slopes of d  also decrease with increasing particle size (i.e., with decreasing AE); the AE 614 

dependence is apparently due to its negative correlation with AOD.   615 

Aerosol radiative efficiency is influenced by the surface reflectance and SSA. When SSA is high, 616 

the dominant aerosol scattering effect increases the TOA albedo. Over bright (high BHR) 617 

surfaces, the added contribution of aerosol scattering is less significant, which diminishes the 618 

aerosol radiative efficiency. When SSA is small and aerosol absorption is important, the TOA 619 

albedo change due to the presence of aerosols is also small, because absorbing aerosols reduce 620 

the radiance scattered back to space. This effect is enhanced over bright surfaces. In regions with 621 

high BHR and low SSA, the aerosol radiative efficiency can be negative, i.e., aerosols may exert 622 

a warming effect on the atmosphere. The four-month mean aerosol radiative efficiencies over 623 

global land derived from this study are 0.089 (blue), 0.050 (green), 0.035 (red), 0.040 (NIR). 624 

We also divided the global land surface into seven vegetation cover types and calculated the 625 

mean d  for each type. Despite the large surface reflectance, d  over barren regions is high 626 

due to the large aerosol loading. The d  over global croplands is also high, attributed to the 627 

small BHR and large SSA. Smallest d  is over needleleaf forests and shrublands, where the 628 

aerosol loading is small. 629 

Aerosols affect the radiative balance in the atmosphere by modifying the TOA albedo. The d  630 

calculated in this study is a first step toward to estimating aerosol broadband shortwave direct 631 
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radiative effect (SWDRE). First, the change of spectral TOA albedo due to the presence of 632 

aerosols can be converted to the change of TOA broadband radiative flux. Second, since the 633 

Terra satellite which carries the MISR instrument is in a sun-synchronous orbit, the current 634 

estimated d  is only an „instantaneous‟ value and a daily cycle albedo model must be applied to 635 

convert this value to daily mean value. A multi-spectral radiation transfer model will facilitate 636 

these conversions [e.g., Kaufman et al., 2002b].  637 

The method presented in this paper can be extended to over ocean with some modifications. 638 

MISR BHR product is not available over ocean. Solar zenith angle, wind speed and ocean 639 

chlorophyll concentration are major factors affecting the ocean surface albedo (Jin et al., 2004). 640 

We can use these parameters to stratify the ocean surface and do similar regressions in each 641 

stratum. The detailed estimation of aerosol SWDRE over global land and ocean using MISR 642 

observations will be addressed in Part II of this series. Additionally, direct aerosol forcing has to 643 

be extended into partly cloudy and cloudy regions. These regions are likely to have high TOA 644 

reflectances, and consequently small or negative values of d . Including these areas will 645 

decrease the aerosol SWDRE. 646 

The aerosol radiative effect estimated in this study includes contributions from both natural and 647 

anthropogenic aerosols. In addition to the composite aerosol amount and optical properties, 648 

MISR is also able to provide the aerosol optical depth stratified by aerosol types [Kahn et al., 649 

2001; Kalashnikova and Kahn, 2006; Chen et al., 2008]. This aerosol climatology information, 650 

which will be recorded in a future MISR Level 3 Joint Aerosol Research Product, can be 651 

exploited to distinguish natural aerosol effect from anthropogenic influences. Following a similar 652 

approach as we used here, these data will make possible improved estimation of aerosol radiative 653 

forcing over land. 654 
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Figure captions 828 

 829 

Figure 1. An example of linear regression used for estimating aerosol-free TOA albedo (~60°N, 830 

94°W; 0.04<BHR<0.05). Each black dot represents a data pair with spectral (blue band in this 831 

case) AOD and TOA albedo (with side contribution). The y-intercept of the regression line 832 

(dashed) represents the derived spectral TOA albedo in the absence of aerosols. Grey dots show 833 

the data pairs with AOD and TOA albedo from MISR standard product when the side 834 

contributions of radiance associated with each RLRA column are not included. 835 

 836 

Figure 2. Global over-land distribution of MISR-observed (a) AOD, (b) SSA, (c) AE, and (d) 837 

surface BHR in cloud-free land region, averaged over June-September 2007, at 2°×2° spatial 838 

resolution. The AOD, SSA, and BHR values shown are for the MISR green band (0.56m). 839 

 840 

Figure 3. Probability distributions of d , AOD, BHR, SSA, and AE over global land are shown 841 

in diagonal panels (A ~ E). Also shown are fitted lines on the pairwise scatter plots of these 842 

variables (a ~ j). All plots are based on mean values of these variables in 2°×2° regions during 843 

June-September 2007. Colored lines correspond to the four spectral bands (purple for NIR). 844 

 845 

Figure 4. Global distribution of TOA albedo change by aerosols ( d ) in the four MISR bands (a: 846 

blue; b: green; c: red; d: NIR) over cloud-free land regions, averaged over June-September 2007, 847 

at 2°×2° spatial resolution. 848 

 849 
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Figure 5. Latitudinal distributions of (a) d  and (b) aerosol radiative efficiency in four spectral 850 

bands: blue (blue line), green (green line), red (red line), and NIR (purple line). The distribution 851 

of MISR AOD (0.56m) (black dashed line in (a)) and BHR (0.56m), SSA (0.56m), and AE 852 

(black lines in (b)) are also shown. These data are averaged over June-September 2007. 853 

 854 

Figure 6. (a) Dependence of d  ~ AOD correlations on BHR in the green band. Grey line is the 855 

fitted line on correlation between d  and AOD for data sets with small BHR (smaller than the 856 

median of all BHR values in 2°×2° regions globally). Black line represents the correlation for 857 

data sets with large BHR (larger than median). Green line is fitted line for the whole data set. (b) 858 

Similar to (a), except for small and large SSA. (c) Similar to (a), except for small and large AE. 859 

 860 

Figure 7. Aerosol radiative efficiency versus BHR, SSA, and AE in four spectral bands. 861 

 862 

Figure 8. Aerosol radiative efficiencies versus BHR and SSA in four spectral bands. red color 863 

means that the aerosols increase the TOA albedo, while the blue color indicates the aerosol effect 864 

on TOA albedo is negative. Box 1 and box 2 represent cases with high SSA and low SSA, 865 

respectively. 866 

 867 

Figure 9. (a) Global map of aggregated vegetation types derived from annual mean MODIS land 868 

cover product. (b) Calculated d  versus AOD in the green band (0.56m) over different 869 

vegetation types. The black line shows the globally averaged values over all vegetation types. 870 

 871 
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Table 1: Summary of MISR products and parameters used in this study 

 

Product Parameter Version Spatial 

Resolution 

(km×km) 

Explanation 

TC_Albedo AlbedoLocal
1
 

 

F05_0011 2.2×2.2 TOA local albedo, derived from top-leaving 

Bidirectional Reflectance Factors (BRFs) only 

BRFSide_Mean 2.2×2.2 Mean value of BRFs registered to the side of a column 

NumUnobscureSide 2.2×2.2 Number of unobscured pixels with BRFs registered to 

the side of a column 

CloudyClearDesignation 2.2×2.2 Cloudy-Clear designation determined from SCCM and 

ASCM 

TC_Classifier SVMCloudConfidenceLevel F05_0010 1.1×1.1 Support Vector Machine (SVM) derived cloud 

confidence level 

AS_Land LandBHR F06_0021 1.1×1.1 Bi-Hemispheric Reflectance over land 

AS_Aerosol RegBestEstimateSpectralOptDepth F11_0021 17.6×17.6 Best estimated aerosol optical depth 

RegBestEstimateSpectralSSA 17.6×17.6 Best estimated aerosol single scattering albedo 

RegBestEstimateAngstromExponent 17.6×17.6 Best estimated aerosol angstrom exponent 

 

 

 

 

 

                                                 
1 AlbedoLocal, BRFSide_Mean, NumUnobscureSide, LandBHR, RegBestEstimateSpectralOptDepth, and RegBestEstimateSpectralSSA are available for four 

spectral bands 
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Table 2: Mean values of MISR spectral AOD, SSA, AE, BHR, and derived d  and 

aerosol radiative efficiency over global land and over each vegetation type for June-

September 2007. The values are given for MISR blue (B), green (G), red (R), and near 

infrared (N) bands. Uncertainties are provided when available1. 

 

Parameters Global land 

Needle 

leaf 

forest 

Broad 

leaf 

forest 

Shrub 

land 
Savanna 

Grass 

land 

Crop 

land 
Barren 

AOD 

B 0.256±0.051 0.124 0.241 0.176 0.248 0.225 0.271 0.404 

G 0.202±0.040 0.091 0.184 0.135 0.182 0.174 0.204 0.343 

R 0.167±0.033 0.070 0.148 0.120 0.140 0.143 0.161 0.303 

N 0.132±0.026 0.051 0.112 0.085 0.101 0.113 0.120 0.261 

SSA 

B 0.964 0.964 0.953 0.963 0.955 0.974 0.972 0.974 

G 0.971 0.966 0.963 0.968 0.958 0.981 0.976 0.984 

R 0.974 0.967 0.968 0.971 0.958 0.984 0.978 0.989 

N 0.973 0.964 0.965 0.971 0.955 0.985 0.977 0.990 

AE 1.170 1.413 1.222 1.228 1.373 1.115 1.356 0.845 

BHR 

B 0.067 0.043 0.054 0.067 0.051 0.068 0.054 0.114 

G 0.103 0.063 0.057 0.105 0.077 0.117 0.086 0.202 

R 0.120 0.044 0.041 0.122 0.082 0.139 0.079 0.285 

N 0.246 0.215 0.185 0.245 0.239 0.272 0.286 0.340 

d  

B 0.018±0.003 0.0088 0.0178 0.0121 0.0164 0.0180 0.0236 0.0204 

G 0.010±0.003 0.0039 0.0104 0.0067 0.0097 0.0105 0.0128 0.0130 

R 0.007±0.003 0.0021 0.0071 0.0045 0.0072 0.0073 0.0080 0.0093 

N 0.008±0.006 0.0025 0.0060 0.0046 0.0063 0.0063 0.0063 0.0170 

Aerosol 

radiative 

efficiency 

B 0.070 0.093 0.097 0.091 0.090 0.106 0.119 0.068 

G 0.048 0.037 0.052 0.043 0.046 0.057 0.058 0.041 

R 0.039 0.020 0.034 0.028 0.031 0.037 0.032 0.030 

N 0.052 0.027 0.029 0.031 0.031 0.033 0.028 0.046 

 

                                                 
1 Uncertainties for MISR spectral AOD are calculated by 20% × AOD based on Kahn et al.[2005]. 

Uncertainties of d are from this study. Absolute uncertainties for SSA, AE, and BHR are not yet known, 

due to the difficulty in obtaining validation data. 
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